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Motivations

This talk is based on the followings:
(CS) A.R. Calderbank and N.J.A. Sloane, Modular and p-adic
cyclic codes, DCC, 6 (1995), 21-35

S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their
weight enumerators, Discrete Math. 305 (2005), 123—-135

S.T. Dougherty and Y.H. Park, Codes over the p-adic integers,
Des. Codes. Cryptogr. 39 (2006), 65-80

Recent work of S. Han on computing number of codewords of
given weight (2011)

an unpublished note of mine (2012)
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Codes over :De

Terminology

m Let mbe a positive integer. A Zn-submodule of Z}, is called a
(modular) code over Z, of length n.
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m (Hamming weight) For X = x1 X2 - - - X, Wty(x) is the number of
nonzero components.
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nonzero components.

B d(X,y) = wiy(x —y) and d¢ is minimum of d(x) for 0 # x € C.

Young Ho Park On lifted codes and p-adic codes



Codes over :De

Terminology

m Let mbe a positive integer. A Zn-submodule of Z}, is called a
(modular) code over Z, of length n.

m (Hamming weight) For X = x1 X2 - - - X, Wty(x) is the number of
nonzero components.

B d(X,y) = wiy(x —y) and d¢ is minimum of d(x) for 0 # x € C.
m For x,y € C, the inner product is defined by x -y = > x;y;.

Young Ho Park On lifted codes and p-adic codes



Codes over :De

Terminology

m Let mbe a positive integer. A Zn-submodule of Z}, is called a
(modular) code over Z, of length n.

m (Hamming weight) For X = x1 X2 - - - X, Wty(x) is the number of
nonzero components.

B d(X,y) = wiy(x —y) and d¢ is minimum of d(x) for 0 # x € C.
m For x,y € C, the inner product is defined by x -y = > x;y;.
mCl={xecC|x-y=0Vyc C}. Cisself-dual if C = C*.
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Codes over :De

Basis for a code over Z.

m The vectors vy, - -, Vi € Zg, are said to be modular
independent if > a;v; = 0 implies that all a; are nonunits, i.e.,
p | a; for all /.
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Basis for a code over Z.

m The vectors vy, - -, Vi € Zg, are said to be modular
independent if > a;v; = 0 implies that all a; are nonunits, i.e.,
p | a; for all /.

m The codewords vy, - - - , v, form a basis for C if they are modular
independent and generate C.
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Codes over :De

Basis for a code over Z.

m The vectors vy, - -, Vi € Zg, are said to be modular
independent if > a;v; = 0 implies that all a; are nonunits, i.e.,
p | a; for all /.

m The codewords vy, - - - , v, form a basis for C if they are modular

independent and generate C.

B A k x nmatrix G is a generator matrix of C of length n if its
rows form a basis for C. A generator matrix for C is called a
parity check matrix of C.
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Let M be an m x n matrix over Zp. Then by performing operations of
the type

R1) Permutation of the rows,

R2) Multiplication of a row by a unit of Zpe,

R3) Addition of a scalar multiple of one row to another, and

C1) Permutation of the columns,

M can be transformed to the standard form

(
(
(
(

by Aot Aoz Az ... Aoet Aoe
0 plg PpA2 pPAiz ... PAle1 PAie
0 0 p2/k2 p2A23 R p2A279_1 pzAge
0 0 0 0 [36_1/;(971 pe_1Ae,1ﬁe (1)
0O O 0 0 ... 0 Oy,
| 0 0 0 0 . 0 0 ]

where the columns are grouped into square blocks of sizes
ko, k1, ..., Ke—1, Ke and the k; are nonnegative integers adding to n.
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Codes over :De

Type of a code

A matrix in this standard form is said to be of type

(1) (p) (p?)e - - (p°")fe-10, 2

omitting terms with zero exponents, if any. Often the 0% is left off the
type, but we retain it since we use k. later. Some uses the notation

{k(), k1a Tty ke—1 5 ke} or (pe)ko(p671 )k1 e (1 )k@i1

instead.
The type of a code is the type of the generator matrix of the code.
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Codes over Z e

Let C be a code over Zp.. Then
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p-adic integers
p-adic numbers

Fix a prime number p. For a nonzero r € Q, write

a
r=p‘,, (ap)=(bp)=1.
The p-adic absolute value is defined by

|"|p:P_k-

| - |p defines a metric on Q. By completing Q with respect to this
metric, we obtain a field of p-adic humbers

@pz{zaipi\ 0<ai<p meZ}>Q.

i=ng
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p-adic integers
p-adic integers

Its subring
Zp= ={)_aip |0<a <p}={acQpllalp <1}
i=0

is called the ring of p-adic integers. It is a pricipal ideal domain. The
standard notation for Zpe is Zp!
Zp~ can be defined as the inverse limit of the system

Lp < Lpp < Lips -+

where the maps Zpe«1 — Zpe is x +— x (mod p®). Thus two p-adic
integers a = S iff a = 8 (mod p°) for all e.
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p-adic integers

Theorem (Ostrowski)

Every metric on Q is equivalent to the metric induced by the usual
absolute value | - | = | - | or the p-adic absolute value | - |, for some
prime p.

Theorem (Product Formula)

Forr e Q,
H Irlp=1.

p<oo

Theorem (Hasse-Minkoswki)

r € Q is a square iff r is a square in Qp for all p < oco.
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p-adic integers

Some surprises or fun

1+2+22428 4+ = =1inQ (2] =1 < 1).
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p-adic integers

Some surprises or fun

1+2+22428 4+ = =1inQ (2] =1 < 1).
(Freshmen’s Dream) A series ) a, converges iff lim a, = 0 in Qp.
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p-adic integers
Some surprises or fun

1+2+22428 4+ = =1inQ (2] =1 < 1).
(Freshmen’s Dream) A series ) a, converges iff lim a, = 0 in Qp.
We have the inequality

la+ Blp < max{|«|p, |8]p}( non-archimedian)

and any element in the sphere S.(a) = {x € Qp | |[X — a|p < €} is
a center.
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p-adic integers
Some surprises or fun

1+2+22428 4+ = =1inQ (2] =1 < 1).
(Freshmen’s Dream) A series ) a, converges iff lim a, = 0 in Qp.
We have the inequality

la+ Blp < max{|«|p, |8]p}( non-archimedian)

and any element in the sphere S.(a) = {x € Qp | |[X — a|p < €} is
a center.

(2121342303 - - ~(5))2 = —1in Qs. Indeed, —1 is a square in Qp, iff
p=1 (mod 4).
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p-adic codes
Generator matrix of p-adic codes

Any code over Zp~ has a generator matrix of the form:

Pl pP™Aos P™Ace P™Aos - oo P™Ag
0 Pl P™MAr2 P™MAIz - o P AL
0 0 0 e 0 Pl P A1

where I, is the identity matrix of size k;, giving its type as before.

Theorem

C = (Ct)* ifand only ifC has type 1% for some k. In particular, any
self-dual code has type 1.

We will only consider p-adic codes C of type 1.
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p-adic codes

Define a map Ve : Zp — Zpe by
e8] ] e—1 )
VoD ap)=> ap.
i=0 i=0

Definition
Let 1 < ey < ez be integers. An [n, k] code Cy over Zye, lifts to an

[n, k] code C over Ze,, denoted by Cy < Co, if Co has a generator
matrix Gz such that W, (Gz) is a generator matrix of Cy.

By projecting C to Z., we get series of lifts of codes C® = W,(C) of
type 1 over Zpe.

Conversely, if C is an [n, k] code over Z,, and G = Ay is its generator
matrix, then

Ge = Ao + PA1 + PPAg -+ + p° ' A

define a series of generator matrices and a p-adic generator matrix
G which defines a unique p-adic code C such that the generator
matrix of C¢ is Ge.

Therefore, a p-adic code is the same as a series of lifts from a code

over Zp.
Young Ho Park On lifted codes and p-adic codes



p-adic codes
p-adic self-dual codes

Let p # 2. Self-dual codes exist over Zy- if and only if
n=0 (mod 4) ifp=3 (mod4)
n=0 (mod2) ifp=1 (mod 4).

([DP] Codes over the p-adic integers)
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p-adic codes
p-adic self-dual codes

Let p # 2. Self-dual codes exist over Zy- if and only if
n=0 (mod 4) ifp=3 (mod4)
{n =0 (mod 2) ifp=1 (mod 4).
Self-dual codes exist over Zo if and only if the length is a
multiple of 8.

A self-dual code over Z, lifts to a self-dual code over Z,~ if and
only if every codeword has the weight divisible by 4.

For p # 2, any self-dual code C over Z, lifts to a self-dual code
over p-adic integers.

MDS codes exist over the p-adics for all nand k with k < n
(MDS if d = n— k + 1 and type 1%).

([DP] Codes over the p-adic integers)
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p-adic codes
Minimum distances

Let C be a p-adic [n, k] code C of type 1X, and G, H be a generator
matrix and a parity-check matrix of C, respectively. Let

C®=VWe(C), Ge=1e(G), He=Ve(H)

and d = d(C"), ds, be the minimum distances of C' and C,
respectively.
Note that we have well-defined maps

de — deﬂ 9 deﬂ — Zze
vV — pv pv o~ v
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Lemma

pce c cetl.
vV =pvg € C®iffvg € C® .

Lemma

For a p-adic code C,
d(C®) is equal to d = d(C") for all e < .
d is at least d.
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Quadratic residue codes QR codes over fields

Quadratic residue codes over fields

Setting:
n a prime (length)

Then
x"—1=(x—1)Q(x)N(x)

is a factorization in Zy[x] (.- p € Q).

Definition

Quadratic residue codes Q > 91, N D N; are cyclic codes of
length n with generator polynomials (respectively)

Q(x), (x—1)Q(x), N(x), (x—1)N(x).
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Quadratic residue codes QR codes over fields

Quadratic residue codes over fields

Setting:
n a prime (length)
another prime p which is a quadratic residue modulo n (base)

Then
x"—1=(x—-1)Q(x)N(x)

is a factorization in Zy[x] (.- p € Q).

Definition

Quadratic residue codes Q > 91, N D N; are cyclic codes of
length n with generator polynomials (respectively)

Q(x), (x—1)Q(x), N(x), (x—1)N(x).
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Quadratic residue codes QR codes over fields

Quadratic residue codes over fields

Setting:
n a prime (length)
another prime p which is a quadratic residue modulo n (base)
o a primitive n root of 1 in some extension of Z,

Then
x"—1=(x—1)Q(x)N(x)

is a factorization in Zy[x] (.- p € Q).

Definition

Quadratic residue codes Q > 91, N D N; are cyclic codes of
length n with generator polynomials (respectively)

Q(x), (x—1)Q(x), N(x), (x—1)N(x).
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Quadratic residue codes QR codes over fields

Quadratic residue codes over fields

Setting:
n a prime (length)
another prime p which is a quadratic residue modulo n (base)
o a primitive n root of 1 in some extension of Z,
Q quadratic residues mod n, N quadratic nonresidues mod n

Then
x"—1=(x—1)Q(x)N(x)

is a factorization in Zy[x] (.- p € Q).

Definition
Quadratic residue codes Q > 91, N D N; are cyclic codes of
length n with generator polynomials (respectively)
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Quadratic residue codes QR codes over fields

Quadratic residue codes over fields

Setting:
n a prime (length)
another prime p which is a quadratic residue modulo n (base)
o a primitive n root of 1 in some extension of Z,
Q quadratic residues mod n, N quadratic nonresidues mod n
Q(x) = [Tieq(x — @), N(X) = [[ien(x — o)
Then
x"—1=(x—-1)Q(x)N(x)
is a factorization in Zy[x] (.- p € Q).

Definition
Quadratic residue codes Q > 91, N D N; are cyclic codes of
length n with generator polynomials (respectively)

Q(x), (x—1)Q(x), N(x), (x—1)N(x).
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Quadratic residue codes QR codes over fields

Facts on QR codes

dmQ =dmN =(n+1)/2,dm Qy =dimN; = (n—1)/2,

minimum distance d > /n

If p=—1 (mod 4), then 9+ = Oy, N* =\

If p=1 (mod 4), then 9+ = Ny, Nt = Oy

Extended codes O, N are self-dual if p= —1 (mod 4).
If (ag,--- ,an_1) € Q(or N), then the extended coordinate is
as, = —y Y. a, where 1+ y2n = 0.

B AutQ contains PSLy(n).

Hamming code of length 7, ternary Golay code of length 11, and
binary Golay code of length 23 are QR codes.
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Quadratic residue codes QR codes over fields

Idempotent generators

Let
fo(x)=> X', fv(x)=>_x"
ieQ ieN
p=2and n=4k — 1: Idempotents of Q and N are
fQ7 fN

p > 2and n= 4k — 1: Idempotents of Q and A are

n+l 146 1-0

Eqlx) = o+ o) + o fu(x)
n+1 1-6 140

En(X) = 5 + ——Ta(x) + ——(x)

where 62 = —n (in Zp).
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Quadratic residue codes r s QR codes over Zpe p-adic

Quadratic residue codes over Zpe

Setting:
n a prime (length)
another prime p which is a quadratic residue modulo nand e > 1
« a primitive n root of 1 in some extension of Zipe
Q quadratic residues mod n, N quadratic nonresidues mod n
Qe(x) = [Ticq(x — ), Ne(x) = [Tien(x — o)
Zpe[a]/Zpe is a Galois ring extension with the automorphism group
generated by the Frobenius map « — «”. This implies that

x"—1 = (x—1)Qe(x)Ne(x)
is a factorization in Zpe[x] (. p € Q).

Definition
Quadratic residue codes 9° > 9F, V¢ > N¢ are cyclic codes of
length n with generator polynomials (respectively)

Qe(x), (x—=1)Qe(x), Ne(x), (x—1)Ne(x).
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Quadratic residue codes ¢ QR codes over Zpy

Hensel’s Lemma version 1

Let f(x) € Zp[x] and suppose that
there exists 31 € Z, such that f(31) = 0 (mod p)

F(B1) #0 (mod p).
Then there exists a unique p-adic integer 3 such that f(5) =0

Example

x? 4+ x + 6 = 0 has solutions

x=0,1 (mod 2),

x=0,2 (mod 3)

Xx =4,8 (mod 13)
Note that f/(8) =28+ 1 £ 0 (mod p) in every case. Thus f(x) has
two roots in Zy- for p = 2,3, 13, respectively.
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Quadratic residue codes QR codes over Zpy

Hensel’s Lemma for cyclic codes

Suppose that f(x) € Zpe[x] (or Zp[x]) is monic and

f(x) = 91(x)g2(x) - - gk(x) (mod p)

is a factorization into pairwise relatively prime polynomials g; € Zp[x].
Then there exist unique pairwise relatively prime polynomials
97 (X) € Zpe[x] such that

f=g7(x)gz(x)- - gr(x)
with g7 = g; (mod p). g7 are called Hensel lifts of g; to Zpe.

In practice we lift gi(x) to g?(x) € Z[x], then to g3(X) € Z[x], - - -,
inductively to g#(x) € Zpe[x] such that

f=9g (x)ghx) - d(x) (mod p')

forallj <e.
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Quadratic residue codes QR codes over fields QR codes over Z,e p-adic QR codes

An example for binary Hamming code of length 7:
xT—1=(x-1)(x3+x+1)(x3+ x% + 1) in Zz[x]
x"=1=(x—-1)(x3+2x% + x — 1)(x® +3x2 + 2x — 1) in Z4[x]
x"—1=(x—1)(x3+6x%+5x —1)(x3+3x2+2x — 1) in Zg[x]

o X' =1=(x=1)F =M% - A+ 1)x=1)P+ A +1)x2+ ) x—1),
where A% + )\ + 6 = 0.
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Quadratic residue codes ds QR codes over :De p

Idempotent generators

Let
fo(x)=> X", fy(x)=>_x".
reQ neN
p=2and n=4k — 1: Idempotents of Q and N are
fQ7 fN

p > 2and n= 4k — 1: Idempotents of Q and A are

n+l 146 1-0

Eqlx) = o+ o) + o fu(x)
n+1 1-6 140

En(X) = 5 + ——Ta(x) + ——(x)

where 602 = —n (in Zpe).
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Quadratic residue codes r p-adic QR codes

p-adic QR codes

Setting.
n =4k — 1 prime, p # n prime, quadratic residue mod n
n' root « of unity of 1 in some extension of Zp-
Q quadratic residues mod n, N quadratic nonresidues mod n
Que(X) = [Ticq(X = '), Noo(X) = ITjen(x — o)
Then
X" =1 =(x—1)Quo(X)Nu(x)

is a factorization in Zp-[x].

Definition
The p-adic quadratic residue codes Q> > 9O, N> D N* are
cyclic codes of length n with generator polynomials (respectively)

Qo(X), (Xx=1)Qx(X), Nx(x), (x—1)Nx(X).
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Quadratic residue codes QR p-adic QR codes

First step to obtain Q..(x)

Recall that n = 4k — 1.
Let

A and p be roots of X2 + x + k =01in Zp= (A +p = —1),
0 aroot of x2 = —nin Zpe.
Then
0==+(A—p)
and

0—1 —0—1
A_77 :LL_ 2

Thus {\, 1} and {6} determine each other.
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Quadratic residue codes Q p-adic QR codes

Equation 02 = —n

Suppose n =4k — 1.

Hp#2
()= G a)r = =

Hensel's Lemma implies that there are two solutions for 6 in Zpe
and in Zp- also.
p=2.
() =1iffn=8r+1.
02 = —nin Zp iff —n=1 (mod 8).
For n = 8r — 1, there exists two solutions for § in Zpe.
However 62 = —n (mod 2¢) has four solutions for e > 3.
(Z;n >~ Z2n—2 X Zz.)
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Quadratic residue codes r field QR p-adic QR codes

Newton’s Identities

The elementary symmetric polynomials sy, s¢, 8, -+, $¢ in
S[X1, Xo,- -+, X;] over aring S are

si( Xy, Xo, -, Xp) = Z X, X, X,, fori=1,2-..t.

i <p<---<l

We define So(X1 R Xg, s ,Xt) =1.
For all i > 1, the i-power symmetric polynomials are defined by

pi(X1, X, -+, Xe) = X{ + X5+ -+ X].

Theorem (Newton'’s identities)

Foreachi> 1,
Pi = Pi—1S1 — Pi—1S2 + -+ + (1) p18i—1 + (=1)"is;, (4)

where s; = si(X1, Xz, -, Xt) and pi = pi( X1, Xz, -+, Xp).
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Quadratic residue codes QR codes over fields QR codes over Z o  p-adic QR codes

Let Q={g1,q, --q:} and

si(a®) = s(a%, 0%, a%), pi(a?) =pi(a®, a%, - a%).

We have

(n—1)/2

Qo (X) =[] (x Z (1) si(a®) X!

i€Q
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Quadratic residue codes QR p-adic QR codes

Formula for Q>°(x)

Lett=(n—1)/2 and Qp=(X) = apX' + a1 X" +--- + a;. Then
a=1,a = -\
aj € Zp- can be determined inductively by the formula

_ Pido + Pi—1&1 + Pi—28 + - + P18t

ai =
! i

bl

where p; = pi(a?).
each a; has the form a\ + b € Z[\].
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Quadratic residue codes p-adic QR codes

An example

n=23 =4k — 1 with kK = 6.

Q={1,2,3,4,6,8,9,12,13,16, 18}, so we may take
p=2,3,13.

Ais aroot of X2+ x +6 = 0in Zpe. (A\2 = —\ — 6)
a =1,a =-)\andwithp;=Xforie Q

82:_P2302P131 _ AT+ \_3
P38 + p2ai + p1az AT+ AN)EA) A=A -3)
asz = — 3 = — 3 =4

The generator polynomial for Q> is

Quo(X) =x" = M0 — (A +3)x° —4x® + (A= 3)x" + (2\ — 1)x8
+ @A)+ A+ 4)x* +4x3 — (A —2)x2 — (A +1)x — 1
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Quadratic residue codes Q -adic QR codes

It is Universal!

No(x) is obtained by replacing A by p in Q. (X).

Taking Qs (X), Noo(X), (X — 1)Quo(X), (X — 1)N(x) modulo p®
with roots A,z of x2 + x +6 =0 (mod p®) for p =2,3,13
forall e > 1

we obtain ALL QR codes for Zge for p = 2,3,13.
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Quadratic residue codes Q p-adic QR codes

p-adic ldempotents (n = 4k — 1)

Idempotent generators of Q> > Q°, N'*° 5 N7* are given as follows:

Eq(x) = a+ bfg(x) + cfu(x),
FalxX) = d — cfo(x) — biy(x) = 1 — Ex(x),
En(X) =a-+ CfQ(X) + be(X),
Fq(x) = @ — bfg(x) — cfn(x) =1 — E4(x),

respectively. Here

and

= — c - =_-
2n ’ n 2n ’
(Binary case with 6 by Calderbank and Sloane)

p 1+86 Ao 1-9
n
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Quadratic residue codes QR codes over fields QR codes over Z_e p-adic QR codes

Reducing these modulo p®, we obtain the idempotent generators
of QR codes over Zye. The actual explicit formula depends on
the length n, producing many cases.

Formulas involving 6 given by [CS] work for odd primes only.

Several authors defined QR codes over Zpe by giving their
idempotent generators.

V.S. Pless and Z. Qian, Cyclic codes and quadratic residue codes
over Z4, |EEE Trans. Inform. Theory, 42 (1996), 1594—1600

M.H. Chiu, S.S.Yau and Y. Yu, Zg-cyclic codes and quadratic
residue codes, Advances in Applied Math., 25 (2000), 12—-33

B. Taeri, Quadratic residue codes over Zy, J. Korean Math Soc., 46
(2009), 13-30

S. J. Kim, Generator polynomials of the p-adic quadratic residue
codes, Kangweon-Kyungki Math. J, 13 (2005), 103—-112

X. Tan, A family of quadratic residue codes over Z,m, preprint, 2011
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Quadratic residue codes Q oe p-adic QR codes

|demp0tents fOI‘ QR COdeS OVer Zg B. Taeri, Quadratic residue codes over Zg, J. Korean Math Soc. (2009)

Takep=3,e=2,andn=12r+1. (ne Qiff n==+1 (mod 12)).
n=12r -1
r=3¢,n=28 (mod 9).
0==41,(2n""'=4,a=0a =1,b,c=0,8.
idempotents : 8fg, 8fy, 1 + fq, 1 + fy.
r=30+1,n=2 (mod 9).
6=+4,(2n)"'=7,a=3,4 =7,b,c=86,8.
idempotents :3 + 8fq + 6fy, 3 + 6fq + 8fy, 7 + fq + 3fy, 7 4 3fg + fy.
r=3(+2,n=5 (mod 9).
9=+2,(2n""'=1,a=6,a =4,b,¢c=3,8.
idempotents :6 + 3fq + 8fy, 6 + 8fq + 3fy, 4 + 6fq + fy, 4 + fq + 6fy.
n=12r +1.
r=3¢,n=1 (mod 9).
idempotents : 1 + fy, 1 + fq, 81q, 8.
r=3(+1,n=4 (mod 9).
idempotents : 6 + 3fq + 81y, 6 + 8fg + 3fn, 4 + 6fq + fn, 4 + fq + 61n.
r=30+2,n=7 (mod9).
idempotents : 7 + fq + 3fy, 7 + 3fq, +n, 3 + 8fg + 61y, 3 + 61g, 8fn.
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Quadratic residue codes Q p-adic QR codes

Idempotents for QR codes over Zg

Takep=2,e=3,andn=4k -1=8r—1(ne Qiff n=+1
(mod 8))so n~!' = —1 (mod 8).
We need to solve x2 + x +2r =0 (mod 8) for A and p.
Recalla= (n+1)/(2n) = —4r,b=—u/n=p,c=-A/n=A.
r=0 (mod 4)

Ap=0,7,a=0,b=7,c=0.

idempotents : 7fq, 7fn, 1 + fo, 1 + fy
r=1 (mod 4)

\Mpu=25a=4b=5c=2.

idempotents :

4 + 2fq + 5fy, 4 + 5fg + 2fy, 5 + 6fq + 3fy, 5 + 3fg + 6fy

r=2 (mod 4)

\Nu=3,4a=0b=4c=3.

idempotents : 3fq + 4y, 4fq + 3fn, 1 + 5fq + 4fy, 1 + 5fqg + 41y
r=3 (mod 4)

AMp=16a=4b=6,c=1.

idempotents 4+ fQ + 6fN,4 + 6fQ =+ fN,5 + fQ + GfN,S + 6fQ 4+ fy
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Quadratic residue codes r p-adic QR codes

Extended QR codes

Let Gy be the generator matrix for Q5°. Then the generator matrix of
the extended QR code O is given by

G 0
1 9n
where 1 = (1,1,--- ;1) of length nand 1 ++2n=0in Zpe.
Thus ¢yCt -+ Ch_1Cx € Q if and only if
Y3 G+ Coo =0
S cial =0 forall /.
From this we obtain the following:

Theorem

For a prime n = 4k — 1 and another prirpe p which is a quadratic
residue mod n, the extended QR code Q> is a self-dual MDS codes
of length n+ 1 with minimal distance (n+ 3)/2 over Zp--.
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MacWilliams identities

Let C be a p-adic [n, k] code and A} be the number of codewords of
weight j in C¢. Then

chxy ZAGI‘III

is called the weight enumerator of Ce.

Theorem (MacWilliams Identity)

We- (x.y) = |%|WC(X L -Nyx—y),  (C=c)

Theorem (Gleason’s type theorem Rrains + sioane, seit-duat codes)

Suppose C is a self-dual code over Zy. of even length n = 2k. Then

k
c(x,y) =Y G+ (p° — 1)y?) (xy — y2)<
i=0
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\
Minimum weight vectors

Let C be a p-adic code of type 1% and H be its parity check matrix. Let
d = d(C"). For each subset S C {1,2,---,n} of d elements, let

Hs = (hi)jes

be the matrix whose columns are the i-th columns of H for j € S.
Hs has the standard form
lo—1 0
o p

for some j = —0,0,1,---. Here we let p=>° = 0.
Let

w; - the number of subsets S for which Hs has the type

191 (pl)'
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e—1
j=1

j>e

Corollary

IfAL = AL then AS = A¢ for all e > f.

ds > difandonly if u_., = 0.
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Larger weights

Theorem
Ford <j< d, let

Ki={m| p™ appears in the type of Hs, |S| = j}
Let N = 1 + max Ufgd‘W(,-. Then forevery d < j < d-,
N
A = A

for all e > N. Thus every codeword of weight j in C€ is of the form
p®Nvq for some codeword v, of weight j in CN.
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Suppose that AT = Al for all i < j. Then A? = Al for all e > f.

I j

e=f [A|B|C D
e=f+1 [ A |[B| C|D
A |B|C|D
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QR codes

Theorem

LetC = O be the self-dual extended p-adic QR code of length

n+ 1, rank (n+ 1)/2, and minimum didtance d,, = (n+ 3)/2. Then
the weight enumerator W€(x, y) of C¢ is completely determined by
AG, -+ Ag__4 as follows:

n+1
ch Xy) ZAe n+1 I i

(n+1)/2

= Y (a1 (- v

j=0

Weight enumerators for quadratic residue codes over Zpe can be
determined after finite computation of Al‘? fore=1,--- ,N—1and
j=0,---,(n+1)/2.
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Hamming code

n=7=4k —-1withk=2,and p = 2.
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n=7=4k —-1withk=2,and p = 2.

roots A (and p) of x2 + x +2 = 0 in Zp.
A=..111001111110100101,...11000110000001011010.
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n=7=4k —-1withk=2,and p = 2.

roots A (and p) of x2 + x +2 = 0 in Zp.
A=..111001111110100101,...11000110000001011010.

Qu(x)=x3 = Ax2 — (A +1)x — 1.
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n=7=4k —-1withk=2,and p = 2.

roots A (and p) of x2 + x +2 = 0 in Zp.
A=..111001111110100101,...11000110000001011010.

Qu(x)=x3 = Ax2 — (A +1)x — 1.
Qis an [8,4,5]-code and its projections Q° are [8,4,4]-code.
Generator matrix for 9 is

-1 —2—-1 - 1 0 0 0 1
0 —1 -A—-1 -A 1 0 0 1
0 0 —1 -A—-1 -2 1 0 1
0 0 0 —1 -A-1 =X 1 1
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n=7=4k —-1withk=2,and p = 2.

roots A (and p) of x2 + x +2 = 0 in Zp.
A=..111001111110100101,...11000110000001011010.

Qu(x)=x3 = Ax2 — (A +1)x — 1.
Qis an [8,4,5]-code and its projections Q° are [8,4,4]-code.
Generator matrix for 9 is

-1 —2—-1 - 1 0 0 0 1
0 —1 -A—-1 -A 1 0 0 1
0 0 —1 -A—-1 -2 1 0 1
0 0 0 —1 -A-1 =X 1 1

For example, A (mod 4) = 1,2. Substitution of A gives a
generator matrix for Q', 92.
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Weight enumerators

ds =5, so we need A¢ for i =0,--- ,4.

[ weight [0 ] 4 |
e—1 1] 14
e=2 || 1|14

Using the Gleason type theorem

4
We(x,y) =Y a(x®*+(qg—1)y*) (xy —y»)*" (q=p°),
i=0

we obtain
A5 =56(-2+q),
AZ =28(8 — 6q + §°),
AS =8(—22+219— 7% + q°),
AS = 49 — 56q + 289° - 8¢° + ¢*.
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3-adic Golay code

n=11 =4k — 1 with k=3, and p = 3.
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3-adic Golay code

n=11 =4k — 1 with k=3, and p = 3.
Xis aroot of X2 + x +3 = 01in Za~.
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3-adic Golay code

n=11 =4k — 1 with k=3, and p = 3.
Xis aroot of X2 + x +3 = 01in Za~.
Quo(X)=x5 = Ax* = X3+ X2 — (A +1)x - 1.
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3-adic Golay code

n=11 =4k — 1 with k=3, and p = 3.

Xis aroot of X2 + x +3 = 01in Za~.

Quo(X)=x5 = Ax* = X3+ X2 — (A +1)x — 1.

0> is an [12,6, 7]-code and its projections Q¢ are [12, 6, 6]-code.
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3-adic Golay code

n=11 =4k — 1 with k=3, and p = 3.

Xis aroot of X2 + x +3 = 01in Za~.

Quo(X)=x5 = Ax* = X3+ X2 — (A +1)x — 1.

0> is an [12,6, 7]-code and its projections Q¢ are [12, 6, 6]-code.
[weight [O] 6 |

e=111/|264

e=2 || 1] 264
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3-adic Golay code

n=11 =4k — 1 with k=3, and p = 3.
Xis aroot of X2 + x +3 = 01in Za~.
Quo(X) =x° = 2x* = X3+ X% — (A +)x 1.
0> is an [12,6, 7]-code and its projections Q¢ are [12, 6, 6]-code.
[weight [O] 6 |
e=1 1| 264
e=2 || 1] 264
@A By MacWillams identities or Gleason type theorem, (q = 3°)
AS =792 (-3 +q),
Ag =495 (15 - 8g + ¢°),
AS =220 (—52 4+ 36g — 9¢° + ¢°),
A%, =66 (144 — 120q + 45¢° — 10¢° + ¢*),
¢ =12(-342 +330g — 165¢° + 55¢° — 11¢* + ¢°),
AS, = 726 — 792q + 495¢° — 2209° + 669" — 120° + ¢°.
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Another lift of ternary Golay code

There exists a very simple 3-adic self-dual lift P of the ternary Golay
code defined by the generator matrix

O b b b b b
b 0 b -b -b b
b b 0 b -b —b
G=|b |p b b 0 b —b (6)
b b b b 0 b
b b b -b b 0

where b is a 3-adic number satisfying 56? + 1 = 0 with W(b) = 2. P
has minimum distance 6. One can check that

Peoo =72, 4 =60, pj=0forallj>2
By a theorem

A2 =72(q—1)+60(3 — 1) = 24(2 + 3q).
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As before, we then get the weight enumerators of P¢ as follows, with
q=3°.

A = 242+ 3q),
A = 360(—3 + q),
A = 45(93 — 64q + 11¢?),
A§ = 20(—356 + 3249 — 99¢° + 11¢°),
% — 6(1044 — 1140 + 495¢? — 110¢° + 119*),
A%, = 12(—234 + 294q — 165¢2 + 55¢° — 11¢* + °),
AS, = 510 — 720q + 495¢? — 220q° + 664" — 12¢° + ¢°.
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2-adic Golay code of length 24

n=23=4k -1 withk=6,and p=2.
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2-adic Golay code of length 24

n=23=4k -1 with k=6,and p = 2.
Ais arootof X2+ x +6 =0 in Zow.
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2-adic Golay code of length 24

n=23 =4k — 1 with k=6, and p=2.

Ais arootof X2+ x +6 =0 in Zow.

Qoo (X) = xM = Ax10 + (=X = 3)x® —4x8 + (A = 3)x” + (2) —
NXE+A+3)X3+ (A +4)x* +4x3 — (A —2)x2 — (A +1)x — 1
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2-adic Golay code of length 24

n=23=4k -1 with k=6,and p = 2.

Ais arootof X2+ x +6 =0 in Zow.

Qoo (x) = XM = Mx10 4 (=X = 3)x® —4x8 + (A = 3)x” + (2\ —
NXE+A+3)X3+ (A +4)x* +4x3 — (A —2)x2 — (A +1)x — 1

Qis a [24,12,13]-code and its projections Q¢ are
[24,12,8]-code.
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2-adic Golay code of length 24

n=23=4k -1 with k=6,and p = 2.

Ais arootof X2+ x +6 =0 in Zow.

Qoo (x) = XM = Mx10 4 (=X = 3)x® —4x8 + (A = 3)x” + (2\ —
NXE+A+3)X3+ (A +4)x* +4x3 — (A —2)x2 — (A +1)x — 1

Qis a [24,12,13]-code and its projections Q¢ are

[24,12,8]-code.

[weight [O] 8 [9] 10 | 11 [ 12 |
e= 11759 |0 0 0 2576
e=2 | 11759 |0 | 121444 0 172592

e=3 121444 | 48576 | 658352
e=4 48576 | 1629872
e=5 2504240
e==6 3281456
e=7 3281456
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We(x, y) for binary Golay code of length 24

For e > 6 with g = 2°,

AS, = 4416(—12092 + 711q)

A%, = 12144(27727 — 2844q + 17047)

A%, = 8096(—150842 + 21330q — 255042 + 163q°)

A%, = 759(3841377 — 6825604 + 122400¢° — 156484G° + 970q*)

A2, = 6072(—803456 + 170640q — 40800¢° + 7824G° — 970q* + 57q°)

A%, = 1012(5826836 — 14333764 + 4284007 — 1095364q° -+ 20370g* — 2394¢° + 133q°)
A%, = 6072(—856808 + 2388964 — 8568047 4-273844° — 6790g* +1197¢° — 133¢° +79")

AS, = 1518(2194384 — 682560q + 285600q° — 109536¢° + 33950G* — 7980¢° +
1330¢° — 140q” + 7¢°)

AS, = 2024(—746656 + 255960q — 12240092 + 54768¢° — 20370q* + 5985¢° —
1330¢° + 210q" — 21¢® + ¢°)

AS, = 276(1672076 — 6256809 + 336600¢° — 1721284G° + 74690g* — 26334¢° +
7315¢° — 154097 + 231¢° — 22¢° + ¢'%)

AS, = 24(—3550856 + 1439064q — 860200¢° + 494868q° — 245410¢* + 100947¢° —
33649¢° + 8855q" — 1771¢® + 253¢° — 23¢"° + q'")

AS, = 7199713 — 31397769 + 20644809° — 13196484° + 736230g* — 346104q° +
1345960° — 42504q" + 106269° — 2024q° + 276q'° — 24q'"! + ¢'2
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Ternary QR code of length 24

n=23 =4k —1 with k =6,and p = 3.
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Ternary QR code of length 24

n=23 =4k —1 with k =6,and p = 3.

Qis a [24,12,13]-code and its projections Q¢ are
[24,12,9]-code.
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Ternary QR code of length 24

n=23 =4k —1 with k =6,and p = 3.
Qis a [24,12,13]-code and its projections Q¢ are

[24,12,9]-code.

]weight HO\ 9 \ 10\ 11 \ 12 \
e=1 114048 | 0 0 61824
e=2 114048 | 0 | 72864 | 717600

e=3 72864 | 658352
e=4 1956288
e=5 2721360
e==56 2721360
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We(x, y) for ternary QR code of length 24

For e > 5 with g = 3¢,

A%, = 6624(—6999 + 452q)

AZ, = 18216(16217 — 1808g + 111¢7)

ASs = 12144(—88651 + 13560q — 1665¢° + 108G°)

A%, = 2277(1132101 — 2169604 + 39960¢° — 5184¢° + 323¢*)

A%, = 18216(—237270 + 54240q — 1332047 + 2592G° — 323¢* + 19¢°

A%, = 1012(5170156 — 1366848 + 419580q° — 1088644q° -+ 20349¢* — 2394¢° + 133q°)
A%y = 8072(—761184 +227808q — 83916¢° +27216¢° — 6783¢"* + 1197¢° — 133¢° +7¢")

A%, = 1518(1951476 — 650880q -+ 279720¢° — 108864q° + 33915¢* — 79804° +
1330¢° — 140q” + 7¢°)

AS, = 2024(—664584 + 244080q — 11988092 + 54432¢° — 20349q* + 5985¢° —
1330¢° + 210q" — 21¢® + ¢°)

AS, = 276(1489410 — 5966409 + 329670¢° — 171072¢° + 74613g* — 26334¢° +
7315¢° — 154097 + 231¢° — 22¢° + ¢'%)

AS, = 24(—3165054 + 1372272q — 842490q¢° + 491832¢° — 245157¢* + 100947¢° —
33649¢° + 8855q" — 1771¢® + 253¢° — 23¢"° + q'")

AS, = 6421278 — 2994048q + 2021976¢° — 1311552¢° + 735471g* — 346104q° +
1345960° — 42504q" + 106269° — 2024q° + 276q'° — 24q'"! + ¢'2
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13-ary QR code of length 24

n=23 =4k —1with k=6,and p=13.
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13-ary QR code of length 24

n=23 =4k —1with k=6,and p=13.
Qis a [24,12,13]-code and its projections Q¢ are
[24,12,10]-code.
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13-ary QR code of length 24

n=23 =4k —1with k=6,and p=13.
Qis a [24,12,13]-code and its projections Q¢ are
[24,12,10]-code.
[weight [O] 10 11 [ 12 ]
e=1 1136432 | 0 | 1032240
e=2 || 1]36432 | 0 | 1032240
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Weight Enumerator of 13-ary QR code

For all e with g = 13¢, We(x, y) is given as follows:

1X24+
36432x 14104
1032240x 1212 ¢
1104(—25493 + 2723q)x 113 ¢
6072(33437 — 5446q + 320¢°)x 0y 14 ¢
4048(— 193601 + 40845q — 493542 + 3233 )x%y 15 ¢
2277(851845 — 217840q + 39480q° — 5168q° + 323q%)x8y 16+
18216(— 182420 + 54460q — 13160q° + 2584q° — 323" + 19g°)x7y'7 +
7084(576536 — 196056 + 59220q% — 15504q° + 2907g% — 342¢° + 19¢8)x8y 18+
6072(—600924 + 2287329 — 82908q° + 27132q° — 6783q" + 1197¢° — 133¢° + 797 )x%y "%+
1518(1554180 — 6535209 + 276360q° — 108528¢° -+ 33915q% — 7980¢° + 1330q° — 140q” + 7¢%)x*y?0 +
2024(—533010 + 245070 — 118440g° + 54264¢° — 20349g" + 5985¢° — 1330¢° + 210" — 218 + ¢*)x3y2 1+
276(1201430 — 599060 + 325710g% — 170544q° + 74613¢" — 26334° + 7315¢° — 15407 + 231¢° — 22¢° + q'0)x2y22
24(—2565398 + 1377838q — 832370G° + 490314q° — 245157" + 100947q° — 33649° +
8855q" — 177168 + 253¢° — 2390 + ¢' )Xy ¢
(5226014 — 3006192q + 1997688q° — 1307504¢° + 735471q" — 346104q° + 134596¢° — 42504q" +

10626¢8 — 2024¢° + 27610 — 241 4 ¢12)y24
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Thank you for listening!
©
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